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Abstract. The applicability of the PainlevC test of the complete integrability of the one- 
component nonlinear Klein-Fock-Gordon equations in an arbitrary Riemannian space, 
in the formulation of Weiss et a1 is discussed. Three infinite series of these equations are 
found in the flat two-dimensional space which possess the PainlevC property and include, 
as a special case, the Liouville, sine-Gordon, and Dodd-Bullough equations. It is pointed 
out that the approach of Weiss e? al to select integrable nonlinear equations is not sufficiently 
reliable and needs some strengthening. 

1. Introduction 

Recently Weiss et a1 (1983) proposed a new test of the complete integrability of 
nonlinear partial differential equations ( PDES) which was based on the generalisation 
of the PainlevC property known formerly only for ordinary differential equations (ODES) 

(Golubev 1941). The connection between ODES of the Painlevi type and the completely 
integrable PDES has been pointed out by Ablowitz and Segur (1977). They suggested 
that a given PDE should be integrable if it admits an exact reduction to an ODE of the 
PainlevC type by a suitable symmetry transformation (e.g., by means of the usual 
similarity variables). In the sequel, we shall use the PainlevC property as was proposed 
by Weiss et a1 (1983). 

The generalisation of the PainlevC property to PDES reads as follows. Let a solution 
~ ( x , ,  . . . , x N )  of a PDE be represented in some domain of C N  as 

CO 

Q =  
n=O 

where k is a positive integer, w is a function determining an analytic manifold 
w ( x , ,  . . . , x N )  = 0 in C”, along which the poles of cp occur, and w and E , ( x , ,  . . . , x N )  
are analytic functions in a neighbourhood of the manifold w = 0. If the expansion (1) 
satisfies a given PDE and contains as many arbitrary functions as it should in a 
general solution of the PDE due to the Cauchy-Kovalevskaya theorem, then this PDE 
is considered to have the PainlevC property (or is the equation of P type). The PainlevC 
test for PDES is formulated in the following way (Weiss er a1 1983, Weiss 1983): a 
given PDE is probably completely integrable if it possesses the Painlevi property or 
can be transformed to a PDE of P type. 

In a number of papers (Jimbo et a1 1982, Weiss et a1 1983, Weiss 1983, 1984, 
Chudnovsky and Chudnovsky 1983, Ramani et a1 1983, Steeb et a1 1983) the PainlevC 
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property was tested for such PDES whose integrability is well known. It was found 
that all the investigated integrable PDES either possess the PainlevC property in them- 
selves or are transformable to PDES of P type. What is more, the existence of the 
PainlevC property for a given PDE turned out to be useful for finding Lax pairs and 
Backlund transformations (however, known previously). These results led to a conjec- 
ture that the complete integrability is related to the Painlev6 property. Nevertheless, 
up to now there is no answer to the question of whether one can unambiguously draw 
a conclusion in favour of the complete integrability of a given PDE proceeding from 
the presence or absence of the PainlevC property for this PDE. 

In this paper we perform the PainlevC analysis of some class of one-component 
nonlinear Klein-Fock-Gordon PDES in an arbitrary Riemannian space and select 
equations reducible to PDES of P type which should be integrable according to the 
conjecture of Weiss et al (1983). The essential requirement made on the class of 
equations under consideration is the possibility of transforming them into polynomial 
PDES. Section 2 is devoted to such a transformation. In 0 3 we carry out the PainlevC 
analysis of the polynomial equations obtained. Section 4 contains a discussion of the 
results and some conclusions concerning the PainlevC test as it is formulated by Weiss 
et al. 

2. The transformation to the polynomial form 

Let us consider a general one-component nonlinear Klein-Fock-Gordon PDE 

where + = $ ( x , ,  . . . , x N ) ,  g ( $ )  is an arbitrary nonlinearity, and a space is regarded to 
be N-dimensional Riemannian with a metric tensor g c t p ( x ) .  The operator U is expressed 
as U$ = gapV,V,$ = -re$,. Greek indices at the bottom of scalars stand for 
derivatives with respect to the relevant coordinates, r" = g p Y r n p y ,  ruwv = 
$gap(gpw,u+gpu,p -g,+). The space dimension N and metric tensor g u p ( x )  are not 
fixed. 

Thus, we have the PDE 

gmplLap -r'+a = g ( $ ) .  (3)  

If g ( $ )  is not a polynomial, equation (3) cannot be the PDE of P type, because the 
expansion (1) of any solution must contain only finite negative powers of w. Therefore, 
it is necessary to transform the PDE (3) to a PDE of the polynomial form which can 
itself possess the PainlevC property. With this end in view, let us make the substitution 
of the function $ = +(cp), CP = cp(x,, . . . , x,) with subsequent multiplication of both 
sides of (3) by a proper function O(p) to obtain the PDE of the polynomial form: 

(4) A( CP (gupCPup - ~ " c P U  1 + CP )gepCP,CPp = C ( CP ). 

Here A, B and C are polynomials. In the following we shall restict ourselves to just 
such PDES which can be transformed to the polynomial form (4) by the above procedure. 
With the known polynomials A, B and C in (4), it is easy to reconstruct equation (3) 
because A = (d$/dp)Cl, E = (d2+/dcp2)s2, C = g ( $ ( q ) ) s Z .  Equation (4) allows us 
already to perform the PainlevC analysis by the substitution of the expansion (1) in (4). 
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3. The PainlevC analysis 

According to Weiss et a1 (1983) we demand any solution Q of the PDE (4) to be 
represented in the form of ( l ) ,  that is, in a domain of C N  it must have only poles on 
the manifold of complex dimension N - 1 determined by the condition w = 0. Here 
w and E ,  are considered to be analytic in a neighbourhood of the manifold w = 0, 
and the manifold w = 0 itself is assumed to be non-characteristic (in other words, 

Let the powers of the polynomials A, B and C be s, p and t and their coefficients 
at the highest powers of cp be a,, bo and co, respectively. Substituting (1) in (4) and 
collecting the coefficients with minimal power of w, we obtain 

(1) If ( k  - l )ao+ kbo # 0, then the conditions eo # 0 and gmpwowp # 0 give max[ k(s + 
1) + 2, k( p + 2) + 21 = kt. We put k( s + 1) + 2 = k( p + 2) + 2 = kt, without essential lack 
of generality. Taking into account that s, p and t are non-negative integers and 
(k + l)ao+ kb, # 0, we obtain the two following branches: 

(a) k = 2, the powers of A, B' and C are p + 1, p and p + 3, respectively; p = 
0,1 ,2 , .  . . ; 

(b) k =  1, the powers of A, B and C are p +  1, p and p+4 ,  respectively; p = 
0, 1 ,2 , .  . . . 

(2) If a o ( k +  1) + bok = 0, we get for the same reasons: 
(a) k = l , t h e p o w e r s o f A ,  B a n d  C a r e p + 1 , p a n d p + 3 , r e s p e c t i v e l y ; p = 0 7  1, 

2, . . .; 
(b) k >  1, the powers of A, B and C are p +  1, p and p + 2 ,  respectively; p =  

0,1,2 ) . . . .  
In what follows we shall consider in detail the case k = 2  with 3a0+26,#0, more 
briefly the case k = 1 with 2a0+ bo # 0, as well as one significant example for k = 1 with 

g o % J o w p  # 0). 

2 ~ 0  + bo = 0. 

3.1. The second-order pole 

Let us consider the case k = 2, 3a0+2b0 # 0. Here 

3c P + l  

n=O j = O  

c p =  c A =  1 a j c p p + l - J ,  

P 
p + 3  p + 3 - j  B = C bjcpp-', c = 1 cjcp . 

j = O  / = 0  

Substituting (5) in (4) and equating coefficients at w' to zero for all 1 separately, we 
get the following recursion relations: 
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where n, = 0 , 1 , 2 , .  . ., a,=O for j > p + l ,  b,=O for j > p  and c,=O f o r j > p + 3 .  
The recursion relations (6) make it possible to express E, in terms of 

. . , E,, a,, b,, c,, w and their derivatives. However, it may happen that some E , ,  

called resonances, are not determined by the recursion relations (6). In this case the 
compatibility conditions D,(w) = 0 arise, where D, are nonlinear differential operators 
defined by (6). We shall require the expansion ( 1 )  to contain two arbitrary functions, 
namely, E,  being the resonance for some number r and w with the compatibility 
condition satisfied identically, D,(w) = 0 for any w. 

We have from (6) with 1 = - 2 p  - 6 :  

E,  = [ ( 6 ~ 0  + 4b,) /  C O ] W , W ~ ~ ~ ~ .  

aOr2 - (5ao+ 4b0)r  - (6u0+ 46,) = 0. 

(7)  

It is easy to get from (6) the condition for E ,  to be a resonance: 

(8) 

It should be noted that a, # 0, because a, = 0 leads to r = -1 and there is no resonance. 
Therefore, the power of the polynomial A is always equal to p + 1. The equation (8)  
has the solutions r = - 1 and r = 6 + 4( bo/ a,) which correspond to an arbitrary function 
w and to the resonance E,, respectively. We note that r # O  due to the assumption 
3a,+ 2b, # 0. So, the PainlevC analysis of the PDE (4) for the second-order pole gives 
the infinite series of admissible value for r :  r = 1 , 2 , 3 ,  . . . . We shall consider only the 
first two ones. 

(1) r = 1 .  This means bo = -:a,. From ( 6 )  we obtain the compatibility condition 
D l ( w )  = 0 where 

D l ( w )  = w , ~ ~ w , I ~ ~ ~ +  W , ~ W ~ W , I ~ " ~ ~  ( 9 )  

and Zgpy = 2 g U p T y  + gup, ,gUy,  I ; A p y  = 2 ( g U p g A y  - g U A g p y ) .  The requirement D l ( w )  = 0 
for any w gives 

, (10) X P v )  = 0 0, I',"PY' = 

where parentheses stand for symmetrisation. Noting that z;ApyguA = 2 g P y (  1 - N ) ,  we 
obtain from (10)  N = 1 as a necessary condition. Hence, the equation ( 4 )  is the ODE 

in this case, which is not of interest for us. 
( 2 )  r = 2 .  This means bo = -ao. In the same way we get from D 2 ( w )  = 0: 

where 
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that is, N = 1 (ODE) or N = 2 (PDE). Let us consider the case N = 2.  By a proper 
coordinate transformation ( x l ,  x2) + ( x ,  y )  the matrix g”’ can be brought in some 
domain into the form 

When gpu is taken in the form ( 1 9 ) ,  then ( 1 3 )  and ( 1 4 )  are satisfied identically, while 
( 1 2 )  puts one condition on a ( x ,  y ) :  

aayy = ;( aJ2. ( 2 0 )  

When N = 2,  the curvature tensor RQPpY has the single non-trivial component, R,212. 
Taking into account ( 1 9 )  and (20) we have 

RaPpV = 0. ( 2 1 )  

Hence, the requirement D 2 ( w )  = 0 for any w fixes in this case only the coefficients bo 
and c1, the space dimension ( N  = 2 )  and the geometry (flat). All the other coefficients 
of the polynomials A, B, and C and the power p are arbitrary. Therefore, we have 
the infinite series of the PDES ( 4 )  of P type ( p  = 0, 1 , 2 , .  . .) with the second-order poles 
and resonance E ~ ,  as well, as the corresponding infinite set of the PDES ( 2 )  transformable 
to PDES of P type in two-dimensional flat space. It is easy to write the first representative 
of this series of the PDES ( 2 ) .  When p = 0, we have in the canonical form (& # 0) 

I/I~~ = e’+ e-’+ e3 e-2’, ti =constant. ( 2 2 )  

This PDE is reduced to the PDE of P type by the substitution e’ = Q with the subsequent 
multiplication by Q’. It gives the Liouville equation at r2 = r3 = 0, the sine-Gordon 
equation at t3 = 0 and the Dodd-Bullough equation at 5’ = 0. These three equations 
are the only PDES of the type ( 2 )  whose integrability is known (Ibragimov 1983). 
However, if the conjecture of Weiss et a1 is true, the above PainlevC analysis indicates 
the integrability of both the equation ( 2 2 )  and the whole hierarchy of PDES with p > 0. 
This possibility is discussed in P 4 .  

3.2. The j rs t -order  pole 

Here we consider briefly the second branch: k = 1 with 2aO+ bo # 0.  After the manner 
of the case k = 2 we obtain the recursion relations which give 

and a condition for the existence of the resonance E,:  r = 4 +  2 ( b o / a , ) .  It should be 
kept in mind that r # 0 due to 2aO+ bo # 0. We shall consider below only the cases 
r = l  and r = 2 .  
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(1) r = 1. The compatibility condition D l ( w )  = 0 for any w determines bo and c1, 

(2) r = 2. The compatibility condition D2( 0) = 0 for any w determines bo, c1 and c2: 
but leads to N = 1 (ODE).  

bo = - uO, 

c1= (co/ao)(4a1+ 3 b 1 ) ,  (24) 

c2= ~ 2 c o l a ~ ~ ~ ~ l + ~ l ~ ~ 3 ~ l + ~ ~ l ~ + ~ ~ o / ~ o ~ ~ ~ ~ 2 + ~ 2 ~  

and leads to flat two-dimensional space. Other coefficients of the polynomials A, B 
and C and the power p are not determined. We have again the infinite set of the P 
type equations (4) and the corresponding infinite set of the PDES (2) transformable to 
the PDES (4) of P type. The first representative of this infinite series of the PDES (2) is 
found to be (tl # 0) 

(L~, = tl e2' + l2 e-' + .3 e-2*, ti = constant, 

and the substitution e* = cp with the subsequent multiplication by c p 2  transforms it to 
the PDE possessing the PainlevC property. The PDE (25) also contains all three known 
integrable equations of the form (2). 

3.3. The resonance E~ 

In the preceding consideration when ( k  + l )ao+ kbo # 0 we have obtained that could 
not be the resonance. Let us now take into account the case ( k + l ) a o +  kbo=O when 

is the resonance, as is easy to make sure. Here we shall restrict ourselves by the 
following essential example ( k  = 1): 

oc 

Q =  B = -2cpp, 

In this case eo is not determined (hence, the resonance) and no compatibility conditions 
on w arise. Therefore, we arrive at a conclusion that equation (4) with a glance to 
(26) has the PainlevC property. It is natural to ask now, what equations of the form 
(2) are transformed to the P type equation (4) with the polynomials (26) and in what 
way. From the polynomials A and B (26) we obtain $(p) = pcp-l+ v, p and v are 
constants. We put p = 1 and v = 0. Then $(cp)  = p-l, cp($)  = $-' and C l ( c p )  = - ( P ~ + ~ .  

Since C(cp)=g($(cp))Cl(cp), we find g($)=-(co+cl$+ . . . + c ~ + ~ $ ~ + ~ ) .  In this case 
the PainlevC property does not fix the space dimension N, its metric g a p ( x ) ,  the power 
p and :he coefficients cy Therefore, the equation 

U$ = P"(+)  (27) 

where P, is a polynomial of the power n 3 3 is reduced by the substitution $(cp) = cp-' 
and multiplication by C l ( c p )  = -cp" to the PDE possessing the PainlevC property, in 
arbitrary Riemannian space. In fact, the expansion (1) contains two arbitrary function 
w and so with k = 1. Hence, the application of the PainlevC test of Weiss et a1 to the 
equation (27) forces us to conclude that (27) should be completely integrable, but it 
is obviously not the case. 
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4. Discussion 

We have performed the PainlevC analysis of the one-component nonlinear Klein-Fock- 
Gordon PDES in an arbitrary Riemannian space with an arbitrary nonlinearity. The 
special procedure of the transformation of the PDES in question to PDES of the 
polynomial form was employed and some simple cases were studied in every series of 
admissible values of the polynomial power. Three infinite series of the PDES (4) 
possessing the PainlevC property have been selected in the framework of this approach. 
If the conjecture of Weiss et a1 were valid, then all the obtained equations (4) of P 
type and the corresponding nonlinear PDES (2) should be integrable. The result of 
0 3.3 is especially paradoxical: the PDE (2)  in Riemannian space of arbitrary dimension 
and with an arbitrary polynomial nonlinearity is integrable. Even if we exclude the 
case when eo is the resonance and the compatibility condition on w does not occur at 
all, the integrability of two infinite series of the PDES possessing the PainlevC property 
remains problematic. In particular, every one of the two simplest representatives of 
these series ( 2 2 )  and ( 2 5 )  already contains, as the particular case, all three nonlinear 
PDES of the form ( 2 )  which have the infinite Lie-Backlund transformation group 
(Ibragimov 1983) which seems to be related to the integrability. 

Hence, the above consideration forces us to have doubts about universality of the 
PainlevC criterion in the formulation of Weiss et al. Recently Ward (1984) proposed 
another version of the PainlevC property: if S is an analytic non-characteristic complex 
hypersurface in C", then every solution of the PDE which is analytic on CN\S, is 
meromorphic on C". He succeeded in establishing the PainlevC property for the 
self-dual Yang-Mills equations, without the series expansion ( 1 ) .  It is of interest to 
discuss the PainlevC property of Weiss et a1 from the viewpoint of Ward's test. 

( 1 )  As it is pointed out by Ward, some essential singularities may occur in the 
solution of the PDE during the summation of the expansion ( 1 ) .  Even for ODES it is 
often a complicated problem to show that the expansion ( 1 )  gives only poles (Golubev 
1941). It is significant in this connection that just a truncation of the expansion (1) 
(Weiss et a1 1983) leads to obtaining some remarkable properties of nonlinear equations 
such as Lax pairs and Backlund transformations. 

( 2 )  The PainlevC analysis of PDES by means of the expansion ( 1 )  is similar to that 
for ODES. Nevertheless, there are essential differences between them. In the case of 
ODES the coefficients E,  in ( 1 )  are constants and it is required that the recursion relations 
do not determine q constants where q is the ODE order. Then the expansion ( 1 )  can 
be formally treated as a general solution. In the case of PDES, E,  are functions of N 
variables. The consideration of ( 1 )  as the general solution of the PDE is usually 
motivated by the Cauchy-Kovalevskaya theorem which states that the general solution 
of the PDE (2) must contain two arbitrary functions of N - 1 variables: w and E,. This 
additional freedom is excessive and should disappear in consequence of summing the 
expansion ( 1 ) .  However, it is impossible to guarantee apriori that the needed arbitrari- 
ness remains intact in this process and ( 1 )  be as before the general solution. Other 
solutions with essential singularities may occur in this case. 

(3)  According to the Cauchy-Kovalevskaya theorem, for the expansion ( 1 )  to be 
the general solution of the PDE (4) it is necessary to introduce in ( 1 )  two arbitrary 
functions of N-1 variables. In principle, this happens already in the case of no 
resonances at all ( w  is an arbitrary function of N variables) or with one resonance (it 
could even be fixed) and the compatibility condition for w being an equation of the 
order q 3 2 ,  rather than an identity (its solution w will contain q arbitrary functions 
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of N -  1 variables). In such cases almost all PDES possess the PainlevC property. 
Therefore, both the ‘correct number of resonances’ in the expansion (1) and the 
requirement for compatibility conditions to be satisfied identically are not derived 
from the Cauchy-Kovalevskaya theorem and represent additional postulates. 

In accordance with the above arguments concerning the possibility to represent 
the general meromorphic solution of the nonlinear PDE in the form (1) we conclude 
that the application of the PainlevC property in the formulation of Weiss et al to 
estabish the complete integrability of the PDE ought to be carried out with care. This 
circumstance demands a stronger version of the PainlevC test to be formulated. 
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